Закон Кулона (векторный и скалярный вид), диапазон применимости, обобщение на случай наличия среды. Направление действия силы Кулона

Точечный электрический заряд, единичный электрический заряд, элементарный электрический заряд. Свойства заряда

 

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные – притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

 

Единичный электрический заряд является устойчивым вихревым образованием, в котором сконцентрирована энергия упорядоченного вихревого движения квантов полевой среды.

 

Элемента́рный электри́ческий заря́д — фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда. Равен приблизительно 1,602 176 565(35)·10−19 Кл[1] в Международной системе единиц (СИ)(4,803 204 51(10)·10−10 Фр в системе СГСЭ[2]). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие

 

2. Закон сохранения электрического заряда;

 

В телах, которые находятся в покое и электрически нейтральны, заряды противоположных знаков равны по величине и взаимно компенсируют друг друга. Когда происходит электризация одних тел другими, заряды переходят с одного тела на другое, однако их общий суммарный заряд остается прежним.

 

В изолированной системе тел общий суммарный заряд всегда равен некоторой постоянной величине: q_1+q_2+⋯+q_n=const, где q_1, q_2, …, q_n заряды тел или частиц, входящих в систему.

 

Закон Кулона (векторный и скалярный вид), диапазон применимости, обобщение на случай наличия среды. Направление действия силы Кулона

Закон Кулона - силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

k — коэффициент пропорциональности,

 

Векторный вид: (1)

 

где F12 — сила, которая действуюет на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, который соединяет заряд Q2 с зарядом Q1, r = |r12| (рис. 1). На заряд Q2 со стороны заряда Q1 действует сила F21 = –F12.

В СИ коэффициент пропорциональности равен

Тогда закон Кулона будет в окончательном виде:

(2)

 

Закон Кулона применим для точечных зарядов и для среды, в которой отсутствуют свободные заряды. Если же заряд неточечный, но распределен по некоторой поверхности или объему, тогда обычно эти поверхность и объем разбивают на множество отдельных элементов и заряд каждого элемента рассматривают как точечный, а потом производят суммирование воздействий от всех зарядов. Если же во внешней среде будут присутствовать свободные заряды, они под действием электрического поля основного заряда так распределятся по объему, что создадут собственное электрическое поле, которое компенсирует поле основного заряда

 

4. Принцип суперпозиции;

 

Принцип суперпозиции — один из самых общих законов во многих разделах физики — результат воздействия на частицу нескольких внешних сил или сумма результатов воздействия каждой из сил.

В электростатике — электростатический потенциал, создаваемый в данной точке системой зарядов, есть сумма потенциалов отдельных зарядов.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

· Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

· Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

· Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.

Т.е., если приложеная величинв A вызвала ответ X, и веденная величина B вызывает ответ Y тогда, вход (+ B) производит ответ (X + Y).

Математически, для всех линейных систем F (x) = y, то, где x — есть стимул (вход) и y, — своего рода ответ (результат) в виде суперпозиции (то есть, суммы) стимулов, что приводит к суперпозиции соответствующих ответов:

F(x1+x2+⋯)=F(x1)+F(x2)+⋯.

В математике, это взаимоотношение скорее всего упоминается как аддитивность. В самых реальных случаях, аддитивность F подразумевает, что это — линейная траектория, которую также называют линейной функцией или линейным оператором.

Этот принцип имеет много применений в физике и различных разработках, т.к. много физических систем могут быть смоделированы как линейные системы. Например, луч может быть смоделирован как линейная система, где стимул входа - воздействие лучом, и ответ среды входа - отклонение луча. Поскольку физические системы вообще только приблизительно линейны, принцип суперпозиции - только приближение истинного физического поведения; это обеспечивает понимание в деле производства и эксплуатации в области этих систем.

Принцип суперположения сталкивается с любой линейной системой, включая алгебраические уравнения, линейные дифференциальные уравнения, и системами уравнений тех форм. Стимулы и ответы могли быть числами, функциями, векторами, векторными областями, переменными временем сигналами, или любым другим объектом, который выражает результат определенной аксиомы. Отметьте, что, когда векторы или векторные области, вовлеченные в состояние суперпозиции, рассматриваются как векторная сумма.[1]