XXIII. п.7. Основные понятия корреляционного и регрессионного анализов
При одновременном изучении нескольких признаков какого-либо объекта или учете нескольких показателей в эксперименте возникает вопрос о взаимосвязях между исследуемыми величинами. Наиболее разработанными в математической статистике методами анализа взаимосвязей являютсякорреляционный и регрессионный анализы.
При изучении взаимосвязи признаки делятся на два класса:
· признаки, обуславливающие изменения других признаков, называются факторными, или факторам;
· признаки, изменяющиеся под действием факторных признаков, называются результативными.
Связь называется статистической, если каждому значению факторного признака соответствует определенное (условное) распределение результативного признака. Корреляционной связью называется частный случай статистической связи, состоящий в том, что разным значениям факторного признака соответствуют различные средние значения результативного.
Корреляционная зависимость между признаками и может быть представлена в виде уравнения:
,
где – условное математическое ожидание признака при заданном . Это уравнение называется теоретическим уравнением регрессии (или функцией регрессии) на , а его график – теоретической линией регрессии.