Взаимосвязь состава, структуры и свойств материалов

 

Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала.

Каждый строительный материал характеризуется химическим, минеральным и фазовым составами.

В зависимости от химического состава все материалы делят:

· на органические (древесные, битум, пластмассы и т. п.),

· минеральные (бетон, цемент, кирпич, природный камень и т. п.)

· металлы (сталь, чугун, алюминий).

 

Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов.

Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня.

При характеристике фазового состава материала выделяют: твердые вещества, образующие стенки пор («каркас» материала), и поры, заполненные воздухом и водой. Фазовый состав материала и фазовые переходы воды в его порах оказывают влияние на все свойства и поведение материала при эксплуатации.

Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молёкулярно ионном уровне.

Макроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении.

Микроструктура материала — строение, видимое под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д.

Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое.

Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата.

В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть:

· зернистой (рыхлозернистой или конгломератной);

· ячеистой (мелкопористой);

· волокнистой;

· слоистой.

Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.).

Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др.

Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам.

Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.).

По взаимному расположению атомов и молекул материалы могут, быть кристаллическими иаморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц).

Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние.

Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов.

 

Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске).