В векторной форме

M=[r´F].

Главный или результирующий момент сил относительно неподвижной оси вращенияравен векторной сумме моментов слагаемых сил:

.

Моменты сил относительно осей, которые перпендикулярны и параллельны оси вращения, равны нулю.

Основной закон динамики вращательного движения твердых (недеформирующихся) тел, для которых I=const (второй закон динамики для вращательного движения):

M= I∙ε; .

Импульс вращающего момента – произведение вращающего момента на время его действия:

dt = dL.

Осциллятор– физическая система, совершающая колебания; система, у которой величины, описывающие ее, периодически меняются с течением времени.

Гармонический осциллятор– механическая система, совершающая колебания около положения устойчивого равновесия, описывающие величины которой изменяются по гармоническому закону (закону синуса или косинуса).

Уравнение движения гармонического осциллятора:

; ; ,

где a = d2x/dt2 = –ω02x – ускорение материальной точки;

F – возвращающая сила, которая стремится вернуть систему в положение равновесия (F = –mω02x = –kx);

x – смещение;

k = mω02 – коэффициент возвращающей силы. Он численно равен возвращающей силе, вызывающей единичное смещение.

Решение уравнения движения гармонического осциллятора:

x = x0×sin (ω0t + φ0).

Уравнение гармонических колебаний в комплексном виде:

.

В теории колебаний принимается, что величина x равна вещественной части комплексного выражения, стоящего в этом выражении справа.

Дифференциальное уравнение гармонического колебательного движения:

.

Решением дифференциального уравнения гармонических колебанийявляется выражение вида

x = x0 sin (w0t + j0),

где k = m w02 – коэффициент возвращающей силы;

x – смещение материальной точки;

x0 – амплитуда колебаний;

w0 = 2p/Т = 2pn – круговая (циклическая частота);

n = 1/T – частота колебаний;

T – период колебаний;

j = (w0t + j0) – фаза колебаний;

j0 – начальная фаза колебаний.

Примеры гармонических осцилляторов:

а) пружинный маятник – тело массой m (рис. П1.23), подвешенное на пружине, совершающее гармоническое колебание.

Упругие колебания совершаются под действием упругих сил:

F= –k∙Dl,

где k = m wo2 – коэффициент жесткости;

Dl – относительное удлинение.

Уравнение движения пружинного маятника:

; ,

где ;

Dl – величина деформации.

Решение уравнения движения пружинного маятника:

Dl = (Dl)0×sin (ω0t + φ0).

Круговая частота, частота и период колебаний пружинного маятника:

; ; ;

б) физический маятник – твердое тело, совершающее гармоническое колебательное движение относительно оси, не совпадающей с центром масс (рис. П1.24).

Уравнение движения физического маятника:

.

Решение уравнения движения физического маятника:

j = j0×sin (ω0t + α),

где α – начальная фаза колебаний.

Круговая частота, частота и период колебаний физического маятника:

; ; ; ,

где L = I/md – приведенная длина физического маятника – длина такого математического маятник, период колебаний которого равен периоду колебаний физического маятника;

I – момент инерции физического маятникa относительно оси колебаний;

m – масса физического маятника;

d – расстояние между осью колебаний и центром масс;

в) математический маятник – тело массой m, размерами которого можно пренебречь, подвешенное на невесомой, нерастяжимой нити (рис. П1.25).

Круговая частота, частота и период колебаний математического маятника:

; ; .

Приведенная длина физического маятника – величина, численно равная длине такого математического маятника, период колебаний которого равен периоду колебаний физического маятника:

.

Крутильные колебания – колебания, совершающиеся под действием закручивающего момента, пропорционального углу закручивания (колебания диска, подвешенного на стальной нити):

M= – Da,

где – коэффициент крутильной жесткости;

G – модуль сдвига;

r – радиус нити;

l – длина нити.