Понятие об электродном потенциале

Электроды– электрохимические системы, состоящие из металла или полупроводника, погруженного в раствор или расплав электролита. Фактически, это металлические или графитовые изделия (проводники первого рода), находящиеся в среде, проводящей электрический ток (проводники второго рода). Носителями свободных зарядов в проводниках первого рода являются электроны, а в проводниках второго рода – ионы обоих знаков.

Металлы, как правило, имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы (катионы), находящиеся в равновесии с электронным газом:

Me Á Men+ + nē.

При погружении металла в раствор начинается сложное взаимодействие металла с компонентами раствора. Катионы металла выходят в электролит, а катионы электролита встраиваются в кристаллическую решетку металла. Со временем устанавливается равновесие между электродом и электролитом. В зависимости от того, куда смещено это равновесие, поверхность металла приобретает больший или меньший потенциал.

В результате перераспределения зарядов на границе «металл – раствор» возникает двойной электрический слой (рис. 9.1) и возникает скачок потенциала между металлом и раствором.

 

Рис. 9.1. Двойной электрический слой на границе раздела «металл – раствор»

 

Потенциал электрода, опущенного в электролит, называется электродным потенциалом. Его значения зависят от многих факторов: материала электрода, состава электролита, температуры, давления и т. д. Величину электродного потенциала измеряют относительно некоторого выбранного электрода сравнения, потенциал которого принимают равным нулю. В качестве электрода сравнения обычно принимают стандартный водородный электрод.

Стандартным электродным потенциалом (j0)называется потенциал металла, погруженного в раствор собственной соли и измеренный относительно водородного электрода в стандартных условиях. Стандартные условия: концентрация ионов в растворе 1 моль/л, температура Т = 298 К, давление Р = 1,01325∙105 Па.

По результатам измерений получен ряд стандартных электродных потенциалов (табл. 9.1), который позволяет дать количественную характеристику электрохимической активности металлов. Чем меньше значение φ0, тем сильнее выражены восстановительные свойства металла, т. е. он легче отдает электроны, легче окисляется. Чем больше значение φ0, тем сильнее окислительные свойства катиона металла, находящегося в растворе.

Таблица 9.1

Стандартные электродные потенциалы φ0 некоторых металлов

Электрод Электродный потенциал, В Электрод Электродный потенциал, В
Li+/Li –3,05 Cd2+/Cd –0,40
Rb+/Rb –2,93 Co2+/Co –0,28
K+/K –2,92 Ni2+/Ni –0,25
Ba2+/Ba –2.90 Sn2+/Sn –0,136
Ca2+/Ca –2,87 Pb2+/Pb –0,127
Na+/Na –2,71 2H+/H 0,00
Mg2+/Mg –2,37 Sb3+/Sb +0,20
Al3+/Al –1,70 Bi3+/Bi +0,22
Ti2+/Ti –1,60 Cu2+/Cu +0,34
V2+/V –1,18 Ag+/Ag +0,85
Mn2+/Mn –1,18 Hg2+/Hg +0,85
Zn2+/Zn –0,76 Pt2+/Pt +1,19
Cr3+/Cr –0,74 Au3+/Au +1,5
Fe2+/Fe –0,44    

 

Для вычисления электродных потенциалов в условиях, отличных от стандартных, используют уравнение Нернста:

  , (9.1)

где T – температура, К;

F – число Фарадея, равное 96 500 Кл/моль;

R – универсальная газовая постоянная, равная 8,314 Дж/(моль. К);

n – число электронов, принимающих участие в элементарном акте окислительно-восстановительного процесса;

– концентрация ионов металла в растворе, моль/л.

При T = 298 К формула Нернста приобретает вид:

 

  . (9.2)