Виды статистических группировок

Группировкойназывается разбиение общей совокупности единиц объекта наблю­дения по одному или нескольким существенным признакам на однородные группы, раз­личающиеся между собой в количественном и качественном отношении и позволяющие выделить социально-экономические типы, изучить структуру совокупности и проанализи­ровать связи между отдельными признаками. Группировки являются важнейшим стати­стическим методом обобщения статистических данных, основой для правильного исчис­ления статистических показателей.

С помощью метода группировок решаются следующие задачи:

• выделение социально-экономических типов явлений;

• изучение структуры явления и структурных сдвигов, происходящих в нем;

• выявление взаимосвязи и взаимозависимости между явлениями.

В соответствии с познавательными задачами, решаемыми в ходе построения стати­стических группировок, различают следующие их виды: типологические, структурные, аналитические.

^ Типологическая группировка- это разбиение разнородной совокупности единиц наблюдения на отдельные качественно однородные группы и выявление на этой основе социально-экономических типов явлений. При построении группировки этого вида ос­новное внимание должно быть уделено идентификации типов и выбору группировочного признака. Решение вопроса об основании группировки должно осуществляться на основе анализа сущности изучаемого социально-экономического явления.

Структурнойназывается группировка, которая предназначена для изучения соста­ва однородной совокупности по какому-либо варьирующему признаку, а также структуры и структурных сдвигов, происходящих в нем.

Группировка, выявляющая взаимосвязи между изучаемыми явлениями и призна­ками, их характеризующими, называется аналитическойгруппировкой.

В статистике при изучении связей социально-экономических явлений признаки не­обходимо делить на факторные и результативные.

Факторныминазываются признаки, под воздействием которых изменяются дру­гие результативныепризнаки. Взаимосвязь проявляется в том, что с возрастанием или убыванием значения факторного признака систематически возрастает или убывает значе­ние признака результативного и наоборот.

Особенностями построения аналитической группировки являются:

• единицы статистической совокупности группируются по факторному признаку;

• каждая выделенная группа характеризуется средними величинами результативного признака.

По способу построения группировки бывают простые и комбинационные.

Простойназывается группировка, в которой группы образованы только по одному признаку.

Комбинационнойназывается группировка, в которой разбиение совокупности на группы производится по двум и более признакам, взятым в сочетании (комбинации).

Сначала группы формируются по одному признаку, затем группы делятся на под­группы по другому признаку, а эти в свою очередь делятся по третьему и так далее. Таким образом, комбинационные группировки дают возможность изучить единицы совокупно­сти одновременно по нескольким взаимосвязанным признакам.

При построении комбинационной группировки возникает вопрос о последователь­ности разбиения единиц объекта по признакам. Как правило, рекомендуется сначала про­изводить группировку по атрибутивным признакам, значения которых имеют ярко выра­женные качественные различия.

Принципы построения статистических группировок и классификаций
Построение статистических группировок осуществляется по следующим этапам:

1. Определение группировочного признака.

2. Определение числа групп.

3. Расчет ширины интервала группировки.

4. Определение признаков, которые в комбинации друг с другом будут характери­зовать каждую выделенную группу.

Построение группировки начинается с определения группировочного признака.

^ Группировочным признакомназывается признак, по которому проводится раз­биение единиц совокупности на отдельные группы. От правильного выбора группировочного признака зависят выводы статистического исследования. В качестве основания груп­пировки необходимо использовать существенные, теоретически обоснованные признаки.

В основание группировки могут быть положены как количественные, так и качест­венные признаки. ^ Количественные признаки- это признаки, которые имеют числовое выражение (объем выпускаемой продукции, возраст человека, доход сотрудника фирмы и т. д.). Качественные признакиотражают состояние единицы совокупности (пол, отрас­левая принадлежность предприятия, форма собственности фирмы и т.д.).

После того, как определено основание группировки, следует решить вопрос о количе­стве групп, на которые необходимо разбить исследуемую совокупность единиц наблюдения.

Число групп зависит от задач исследования и вида показателя, положенного в ос­нование группировки, объема изучаемой совокупности и степени вариации признака. Вид показателя особенно существенен при анализе качественных признаков. Так, например, группировка сотрудников фирмы по полу учитывает только две градации: «мужской» и «женский».

В случае группировки единиц наблюдения по количественному признаку особое внимание необходимо обратить на число единиц исследуемого объекта, объем совокупно­сти и степень колеблемости группировочного признака.

При небольшом объеме совокупности (n<50) не следует образовывать большого количества групп, так как группы будут включать недостаточное число единиц объекта. Показатели, рассчитанные для таких групп, не будут представительными и не позволят получить адекватную характеристику исследуемого явления.

Часто группировка по количественному признаку имеет задачу отразить распреде­ление единиц совокупности по этому признаку. В этом случае количество групп зависит, в первую очередь, от степени колеблемости группировочного признака: чем больше его ко­леблемость, тем больше можно образовать групп. Поэтому при определении числа групп необходимо принять во внимание размах вариации признака (R), который позволяет оце­нить вариацию признака между крайними значениями признака - максимальным (Хmах) и минимальным (Xmin) и определяется по следующей формуле:

R= Хmах - Xmin

Чем больше размах вариации признака, положенного в основание группировки, тем, как правило, может быть образовано большее число групп. При этом может возникнуть проблема получения пустых групп, т.е. групп, не содержащих ни одной единицы на­блюдения.

Построение большого числа групп позволит, с одной стороны, точнее воспроизве­сти характер исследуемого объекта. Однако, с другой стороны, слишком большое число групп затрудняет выявление закономерностей при исследовании социально-экономиче­ских явлений и процессов. Поэтому в каждом конкретном случае при определении числа групп следует исходить не только из степени колеблемости признака, но и из особенно­стей объекта и показателей, его характеризующих, а также цели исследования.

Определение числа групп можно осуществить несколькими способами. Формаль­но-математический способ предполагает использование формулы Стерджесса:
n=1+3,322×lgN, (3.1)

где:

n – число групп;

N – число единиц совокупности.

Согласно этой формуле выбор числа групп зависит только от объема изучаемой совокупности.

Применение данной формулы дает хорошие результаты в том случае, если сово­купность состоит из большого числа единиц наблюдения (n>50).

Другой способ определения числа групп основан на применении показателя сред­него квадратического отклонения (σ). Если величина интервала равна 0,5σ, то совокуп­ность разбивается на 12 групп, а когда величина интервала равна 2/З σ и σ, то совокуп­ность делится, собственно, на 9 и 6 групп. Однако при определении групп данными мето­дами существует большая вероятность получения «пустых» или малочисленных групп, характеристики изучаемого явления на основе которых будут недостаточно типичными для выделенной группы и изучаемой совокупности в целом.

Когда определено число групп, то следует определить интервалы группировки.

Интервал- это значения варьирующего признака, лежащие в определенных гра­ницах. Каждый интервал имеет верхнюю и нижнюю границы или одну из них. Нижней границейинтервала называется наименьшее значение признака в интервале. Верхней границей интерваланазывается наибольшее значение признака в интервале. Величина интервала представляет собой разность между верхней и нижней границами интервала.

Интервалы группировки бывают:

• равные и неравные;

• открытые и закрытые.

В зависимости от величины интервалы группировки бывают: равные и неравные. В свою очередь, неравные интервалы подразделяются на прогрессивно возрастающие, про­грессивно убывающие, произвольные и специализированные.

Равные интервалы применяются в случае, если изменение количественного при­знака внутри изучаемой совокупности единиц наблюдения происходит равномерно и его вариация проявляется в сравнительно узких границах.

Ширина равного интервала определяется по следующей формуле:

h=R/n=Xmax – Xmin/n (3.2)

где:

Xmax, Xmin - максимальное и минимальное значения признака в совокупности;

n -число групп.

Если максимальные или минимальные значения сильно отличаются от смежных с ними значений вариантов в упорядоченном ряду значений группировочного признака, то для определения величины интервала следует использовать не максимальное или мини­мальное значения, а значения, несколько превышающие минимум, и несколько меньше, чем максимум.

Полученную по формуле (3.2) величину округляют и она будет являться шириной интервала.

Существуют следующие правила определения ширины интервала.

Если величина интервала, рассчитанная по формуле (3.2) представляет собой вели­чину, которая имеет один знак до запятой (например: 0,67; 1,487; 3,82), то в этом случае полученные значения целесообразно округлить до десятых и их использовать в качестве ширины интервала. В приведенном выше примере это будут соответственно значения: 0,7; 1,5; 3,8.

Если рассчитанная величина интервала имеет две значащие цифры до запятой и несколько после запятой (например 14,876), то это значение необходимо округлить до це­лого числа (до 15).

В случае, когда рассчитанная величина интервала представляет собой трехзначное, четырехзначное и так далее число, то эту величину следует округлить до ближайшего числа, кратного 100 или 50. Например, 652 следует округлить до 650 или до 700.

Если размах вариации признака в совокупности велик и значения признака варьи­руют неравномерно, то надо использовать группировку с неравными интервалами. Нерав­ные интервалы могут быть получены в процессе объединения пустых, не содержащих ни одной единицы совокупности, равных интервалов. Это происходит в том случае, если по­сле построения равных интервалов по изучаемому признаку образуются группы, содер­жащие мало или не содержащие вообще ни одной единицы, т.е. группы, не отражающие определенных типов изучаемого явления по признаку. В этом случае возникает необхо­димость в увеличении интервалов группировки.

Также неравные интервалы могут быть прогрессивно-возрастающие или прогрес­сивно-убывающие в арифметической или геометрической прогрессии. Величина интерва­лов, изменяющихся в арифметической и геометрической прогрессии, определяется сле­дующим образом:

hi+1 = hi + a,

а в геометрической прогрессии:

hi+1 = hi x q,

где:

а - константа: для прогрессивно-возрастающих интервалов имеет знак «+», а при прогрессивно-убывающих - знак «-».

q - константа: для прогрессивно-возрастающих - больше «1»; для прогрессивно-убывающих - меньше «1».

Применение неравных интервалов обусловлено тем, что в первых группах неболь­шая разница в показателях имеет большое значение, а в последних группах эта разница не существенна.

Например, при построении группировки строительных компаний города по показа­телю численности работающих, который варьирует от 500 человек до 3500 человек, неце­лесообразно рассматривать равные интервалы, т. к. учитываются как малые, так и круп­нейшие строительные фирмы города. Поэтому следует образовывать неравные интервалы: 500-1000, 1000-2000, 2000-3500, т. е. величина каждого последующего интервала больше предыдущего на 500 человек и увеличивается в арифметической прогрессии. Выбор ис­следователя в построении равных или неравных интервалов зависит от степени заполне­ния каждой выделенной группы, т.е. от числа единиц в них. Если величина интервала су­щественна и содержит большое число единиц совокупности, то эти интервалы необходимо дробить, а в противном случае - объединять.

Интервалы группировок могут быть закрытыми и открытыми.

Закрытыми называются интервалы, у которых имеются обе границы: верхняя и нижняя границы.

Открытые - это интервалы, у которых указана только одна граница: как правило, верхняя - у первого интервала и нижняя - у последнего. Например, группы страховых компаний по числу работающих в них сотрудников (чел.): до 50, 50-100, 100-150, 150 и более. Применение открытых интервалов целесообразно в тех случаях, когда в совокупно­сти встречается незначительное число единиц наблюдения с очень малыми или очень большими значениями вариантов, которые резко, в несколько раз, отличаются от всех ос­тальных значений изучаемого признака.

При группировке единиц совокупности по количественному признаку границы ин­тервалов могут быть обозначены по-разному, в зависимости от того, непрерывный или дискретный признак положен в основание группировки.

Если основанием группировки служит непрерывный признак (например, группы строительных фирм по объему строительно-монтажных работ, выполненных собственны­ми силами (тыс. руб.): 1200-1400, 1400-1600, 1600-1800, 1800-2000), то одно ито же зна­чение признака выступает и верхней и нижней границами двух смежных интервалов. В данном случае объем работ 1400 тыс. руб. составляет верхнюю границу первого интервала и нижнюю границу второго, 1600 тыс. руб. - соответственно второго и третьего и т.д., т.е. верхняя граница i - го интервала равна нижней границе (i+1) - го интервала.

При таком обозначении границ может возникнуть вопрос, в какую группу вклю­чать единицы наблюдения, значения признака у которых совпадают с границами интерва­лов. Например, во вторую или третью группу должна войти строительная фирма с объе­мом строительно-монтажных работ 1600 тыс. рублей? Если верхняя граница формируется по принципу «исключительно», то фирма должна быть отнесена к третьей группе, в про­тивном случае - ко второй. Для того, чтобы правильно отнести к той или иной группе единицу совокупности, значение признака которой совпадает с границами интервалов, можно ориентироваться на открытые интервалы (по нашему примеру группы строитель­ных фирм по объему строительно-монтажных работ преобразуются в следующие: до 1400, 1400-1600, 1600-1800, 1800 и более). В данном случае, вопрос отнесения отдельных еди­ниц совокупности, значения которых являются граничными, к той или иной группе реша­ется на основе анализа последнего открытого интервала. Возможны два случая обозначе­ния последнего открытого интервала: 1) 1800 тыс. руб. и более; 2) более 1800 тыс. руб. В первом случае, строительные фирмы с объемом строительно-монтажных работ 1600 тыс. руб. попадут в третью группу; во втором случае - во вторую группу.

Если в основании группировки лежит дискретный признак, то нижняя граница i-ro интервала равна верхней границе i-1-го интервала, увеличенной на 1. Например, группы строительных фирм по числу занятого персонала (чел.) будут иметь вид: 100-150, 151-200, 201-300.

При определении границ интервалов статистических группировок иногда исходят из того, что изменение количественного признака приводит к появлению нового качества. В этом случае граница интервала устанавливается там, где происходит переход от одного качества к другому.

Строя такую группировку, следует дифференцированно устанавливать границы ин­тервалов для разных отраслей народного хозяйства. Это достигается путем использования группировок со специализированными интервалами.Специализированные интерва­лы- это такие интервалы, которые применяются для выделения из совокупности одних и тех же типов по одному и тому же признаку для явлений, находящихся в различных усло­виях.

При изучении социально-экономических явлений на макроуровне часто применяют группировки, интервалы которых не будут ни прогрессивно-возрастающими, ни прогрес­сивно-убывающими. Такие интервалы называютсяпроизвольнымии, как правило, ис­пользуются при группировке предприятий, например, по уровню рентабельности.