БИЛЕТ № 14
1. Органеллы: определение, классификация. Строение и функциональная роль эндоплазматической сети и пластинчатого комплекса.
2. Гладкая мышечная ткань: топография, генез, морфофункциональные особенности, регенерация.
3. Головной мозг: отделы, серое и белое вещество, тканевой состав, развитие. Кора полушарий мозга: цито- и миелоархитектоника, понятие о модуле (вертикальные колонки). Возрастные особенности строения коры.
Классификация органелл: общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки.
Они в свою очередь делятся на:
· мембранные органеллы: митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы, пероксисомы;
· немембранные органеллы: рибосомы, клеточный центр, микротрубочки, микрофибриллы, микрофиламенты.
Специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток. Специальные органеллы делятся на:
· цитоплазматические — миофибриллы, нейрофибриллы, тонофибриллы;
· органеллы клеточной поверхности — реснички, жгутики.
Общая характеристика мембранных органелл
· Все разновидности мембранных органелл имеют общий принцип строения:
· они представляют собой замкнутые и изолированные участки в гиалоплазме (компарменты), имеющие свою внутреннюю среду;
· стенка их состоит из билипидной мембраны и белков, подобно плазмолемме.
· Однако билипидные мембраны органелл имеют и некоторые особенности:
· толщина билипидных мембран органелл меньше (7 нм), чем в плазмолемме (10 нм);
· мембраны отличаются по количеству и качеству белков, встроенных в мембраны.
Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы. Различают две разновидности эндоплазматической сети:
· зернистая (гранулярная или шероховатая);
· незернистая или гладкая.
На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы. Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Функции пластинчатого комплекса:
· транспортная — выводит из клетки, синтезированные в ней продукты;
· конденсация и модификация веществ, синтезированных в зернистой эндоплазматической сети;
· образование лизосом (совместно с зернистой эндоплазматической сетью);
· участие в обмене углеводов;
· синтез молекул, образующих гликокаликс цитолеммы;
· синтез, накопление и выведение муцина (слизи);
· модификация мембран, синтезированных в эндоплазматической сети и превращение их в мембраны плазмолеммы.
Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Регенерация гладкой мышечной ткани осуществляется несколькими способами:
· посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки;
· посредством митотического деления миоцитов при их повреждении (репаративная регенерация);
· посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов.
Головной мозг состоит из ствола мозга, который является продолжением спинного мозга (включает продолговатый, задний, средний и промежуточный мозг) и плащевой части, образованной полушариями большого мозга и мозжечком. От ствола отходят десять пар (с 3 по 12) черепных нервов, ядра которых располагаются в пределах продолговатого и среднего мозга. Ядра ствола мозга подразделяются на чувствительные, двигательные и ассоциативные.
1.Чувствительные ядра являются гомологами ядер задних рогов спинного мозга — в них сосредоточены тела и дендриты мультиполярных вставочных нейронов, на которых оканчиваются аксоны псевдоуниполярных или биполярных клеток, несущие сенсорную информацию.
2. Двигательные ядра содержат мотонейроны, аксоны которых оканчиваются на волокнах соматической мускулатуры. К двигательным ядрам часто относят и вегетативные ядра продолговатого и среднего мозга, содержащие тела нейронов, аксоны которых образуют преганглинарные волокна, направляющиеся в парасимпатические нервные узлы в составе 3, 7, 9, 10 пар черепно-мозговых нервов.
3. Ассоциативные (переключательные, релейные) ядра содержат скопления ассоциативных мультиполярных клеток, которые обеспечивают формирование многонейронных рефлекторных дуг путем переключения нервных импульсов, идущих к коре полушарий или мозжечка, или в обратном направлении от коры к стволу мозга и центрам спинного мозга. Белое вещество ствола мозга имеет то же гистологическое строение, что и в спинном мозге и состоит из пучков нервных волокон, образующих восходящие и нисходящие тракты, которые связывают разные отделы центральной нервной системы. Наряду с особенностями топографии и строения, отдельные ядра ствола мозга и его проводящие пути различаются химической спецификой нейромедиаторов. Кора больших полушарий мозга представляет собой высший и наиболее сложно организованный нервный центр экранного типа, деятельность которого обеспечивает регуляцию разнообразных функций организма и сложные формы поведения. Кора образована слоем серого вещества толщиной 3—5 мм на поверхности извилин (30 %) и в глубине борозд (70 %) общей площадью 1500—2500 см2 при объеме около 300 см3. Серое вещество содержит нервные клетки (около 10—15 млрд.), нервные волокна и клетки нейроглии (более 100 млрд.). Цитоархитектоника коры полушарий большого мозга. I. Молекулярный слой располагается под мягкой мозговой оболочкой; содержит сравнительно небольшое число мелких нейронов — горизонтальных клеток Кахаля с длинными ветвящимися дендритами, отходящими в горизонтальной плоскости от веретеновидного тела. II. Наружный зернистый слой образован многочисленными мелкими пирамидными и звездчатыми клетками, дендриты которых ветвятся и поднимаются в молекулярный слой, а аксоны либо уходят в белое вещество, либо образуют дуги и также направляются в молекулярный слой. III. Пирамидный слой значительно варьирует по ширине и максимально выражен в ассоциативных и сенсомоторных областях коры. В нем преобладают пирамидные клетки, размеры которых увеличиваются вглубь слоя от мелких до крупных. IV. Внутренний зернистый слой широкий в зрительной и слуховой областях коры, а в сенсомоторной области практически отсутствует. V. Ганглионарный слой образован крупными, а в области моторной коры (прецентральной извилины) — гигантскими пирамидными клетками. VI. Слой полиморфных клеток образован разнообразными по форме нейронами (веретеновидными, звездчатыми, клетками Мартинотти). Наружные участки слоя содержат более крупные клетки, внутренние — более мелкие и редко расположенные. Миелоархитектоника и организация коры.Нервные волокна коры полушарий большого мозга включают три группы:
· афферентные;
· ассоциативные и комиссуральные;
· эфферентные волокна.
Афферентные волокна в виде пучков в составе радиальных лучей приходят в кору от ниже расположенных отделов головного мозга, в частности, от зрительных бугров и коленчатых тел. Большая часть этих волокон заканчивается на уровне IV слоя. Ассоциативные и комиссуральные волокна — внутрикорковые волокна, которые соединяют между собой различные области коры в том же или в другом полушариях, соответственно. Эфферентные волокна связывают кору с подкорковыми образованиями. Эти волокна идут в нисходящем направлении в составе радиальных лучей (например, пирамидные пути. Модульный принцип организации коры полушарий большого мозга. В коре полушарий большого мозга описаны повторяющиеся блоки (модули) нейронов, которые рассматриваются как ее морфофункциональные единицы, способные к относительно автономной деятельности. Они имеют форму цилиндров, или колонок, диаметром 200—300 мкм (по некоторым данным, до 500 мкм и более), проходящих вертикально через всю толщу коры. В коре большого мозга человека имеется около 2—3 млн. таких колонок, каждая содержит примерно 5000 нейронов. Внутри колонки выделяют также более мелкие мини-колонки, включающие структуры, непосредственно окружающие апикальные дендриты пирамидных клеток.Колонка включает в себя следующие структуры:
· афферентные пути;
· систему локальных связей;
· эфферентные пути.